Mortars for Brickwork

Abstract: This Technical Note addresses mortars for brickwork. The major ingredients of mortar are identified. Means of specifying mortar are covered. Mortar properties are described, as well as their effect on brickwork. Information is provided for selection of the appropriate materials for mortar and properties of mortars.

Key Words: hardened mortar properties, mortar, plastic mortar properties, specifications, Types of mortar.

SUMMARY OF RECOMMENDATIONS:

General
- Use mortar complying with ASTM C270
- For typical project requirements, use proportion specifications of ASTM C270
- Select mortar Type using recommendations of Technical Note 8B
- Use Type N mortar for normal use, including most veneer applications
- Avoid combining two air-entraining agents in mortar

Mortar Materials
Cementitious:
- Use cement complying with ASTM C150 (portland cement), ASTM C595 (blended hydraulic cement), or ASTM C1157 (hydraulic cement) in combination with either hydrated lime complying with ASTM C207, Type S, or lime putty complying with ASTM C1489
- Use mortar cement complying with ASTM C1329
- Use masonry cement complying with ASTM C91

Aggregate:
- Use natural or manufactured sand complying with ASTM C144

Water:
- Use potable water free of deleterious materials

Mortar Admixtures
- Use admixtures complying with ASTM C1384
- When using a set retarding admixture, do not retemper mortar
- Do not use water-repellent admixtures

Pigments
- Use pigments complying with ASTM C979
- Use as little pigment as possible
- For metallic oxide pigments, limit quantity to 10 percent of cement content by weight
- For carbon black pigment, limit quantity to 2 percent of cement content by weight
- Avoid using pigments containing Prussian blue, cadmium lithopone and zinc and lead chromates
- Premix cement and coloring agents in large, controlled quantities
- Do not retemper colored mortar

INTRODUCTION
Mortar is the bonding agent that integrates brick into a masonry assembly. Mortar must be strong, durable and capable of keeping the masonry intact, and it must help to create a water-resistant barrier. Also, mortar accommodates dimensional variations and physical properties of the brick when laid. These requirements are influenced by the composition, proportions and properties of mortar ingredients.

Because concrete and mortar contain the same principal ingredients, it is often erroneously assumed that good concrete practice is also good mortar practice. In reality, mortar differs from concrete in working consistencies, methods of placement and structural performance. Mortar is used to bind masonry units into a single element, developing a complete, strong and durable bond. Concrete, however, is usually a structural element in itself. Mortar is usually placed between absorbent masonry units and loses water upon contact with the units. Concrete is usually placed in nonabsorbent metal or wooden forms, which absorb little if any water. The importance of the water/cement ratio for concrete is significant, whereas for mortar it is less important. Mortar has a high water/cement ratio when mixed, but this ratio changes to a lower value when the mortar comes in contact with the absorbent units.

The most frequently used means of specifying mortar is ASTM C270, Standard Specification for Mortar for Unit Masonry [Ref. 1]. This standard contains information on specifying and using mortar. This Technical Note uses ASTM C270 as a basis and addresses the materials, properties and means of specifying mortars. The other Technical Note in this series addresses the selection and quality control of mortars.
MATERIALS

Historically, mortar has been made from a variety of materials. Burned gypsum and sand were used to make mortar in ancient Egypt, while lime and sand were used extensively in this country before the 1900s. Currently, the basic dry ingredients for mortar include some type of cement, hydrated lime and sand. Each of these materials makes a definite contribution to mortar performance.

Portland and Other Hydraulic Cements

Portland cement, a hydraulic cement, is the principal cementitious ingredient for cement-lime mortar. It contributes to durability, high strength and early setting of the mortar. Portland cement used in masonry mortar should conform to ASTM C150, Standard Specification for Portland Cement [Ref. 1]. Of the eight portland cement Types covered by ASTM C150, only three are recommended for use in masonry mortars:

- **Type I** - For general use when the special properties of Types II and III are not required.
- **Type II** - For use when moderate sulfate resistance or moderate heat of hydration is desired.
- **Type III** - For use when high early strength is desired.

ASTM C270 permits the use of other hydraulic cements in mortar. Some of these materials may slow the strength gain or may affect the color of mortar. The material standards for these cements are ASTM C595, Standard Specification for Blended Hydraulic Cements [Ref. 1], such as portland blast-furnace slag cement, portland-pozzolan cement and slag cement; and ASTM C1157, Standard Performance Specification for Hydraulic Cement [Ref. 1]. The use of blended hydraulic cements is not recommended unless the mortar containing such cements meets the property specifications of ASTM C270.

Because high air entrainment can significantly reduce the bond between the mortar and brick or reinforcement, the use of air-entrained portland, blended hydraulic or hydraulic cements is not recommended. Most building codes have lower allowable flexural tensile stress values for mortar made with air-entrained cementitious materials.

Masonry Cements

Masonry cements are proprietary cementitious materials for mortar. They are widely used because of their convenience and good workability. ASTM C91, Standard Specification for Masonry Cement [Ref. 1], defines masonry cement as “a hydraulic cement, primarily used in masonry and plastering construction, consisting of a mixture of portland or blended hydraulic cement and plasticizing materials (such as limestone, hydrated or hydraulic lime) together with other materials introduced to enhance one or more properties such as setting time, workability, water retention, and durability.” ASTM C91 provides specific criteria for physical requirements and performance properties of masonry cements. The constituents of masonry cement may vary depending on the manufacturer, local construction practices and climatic conditions.

Masonry cements are classified into three Types by ASTM C91: Types M, S and N. The current edition of ASTM C91 requires a minimum air content of 8 percent (by volume) and limits the maximum air content to 21 percent for Type N masonry cement and 19 percent for Types S and M masonry cements. Mortar prepared in the field will typically have an air content that is 2 to 3 percent lower than mortar tested under laboratory conditions.

In the model building codes, allowable flexural tensile stress values for masonry built with masonry cement mortar are lower than those for masonry built with non-air-entrained portland cement-lime mortar. Therefore, the use of masonry cement should be based on the requirements of the specific application.

Mortar Cements

Mortar cements are hydraulic cements, consisting of a mixture of portland or blended hydraulic cement, plasticizing materials such as limestone or hydrated or hydraulic lime, and other materials intended to enhance one or more of the properties of mortar. In this respect, mortar cement is similar to masonry cement. However, ASTM C1329, Standard Specification for Mortar Cement [Ref. 1], includes requirements for maximum air content and minimum flexural bond strength that are not found in the masonry cement specification. Because of the strict controls on air content and the minimum strength requirement, mortar cement and portland cement-lime mortars are treated similarly in the Building Code Requirements for Masonry Structures (ACI 530-05/ASCE 5-05/TMS 402-05) [Ref. 5].
Three Types of mortar cements are specified in ASTM C1329: Types M, S and N. Physical requirements vary depending upon mortar cement Type. Air content for all three Types must be a minimum of 8 percent. The maximum air content is 14 percent for Types M and S and 16 percent for Type N. Flexural bond strength, as measured by the test method in ASTM C1072, Standard Test Method for Measurement of Masonry Flexural Bond Strength [Ref. 1], is also specified. The minimum flexural bond strength for these mortar cements is 115 psi (0.8 MPa) for Type M, 100 psi (0.7 MPa) for Type S and 70 psi (0.5 MPa) for Type N.

Hydrated Lime and Lime Putty
Hydrated lime is a derivative of limestone that has been through two chemical reactions to produce calcium hydroxide. Lime contributes to extent of bond, workability, water retention and elasticity.

Hydrated lime in ASTM C207, Standard Specification for Hydrated Lime for Masonry Purposes [Ref. 1], is available in four Types. Only Type S hydrated lime should be used in mortar. Type N hydrated lime contains no limits on the quantity of unhydrated oxides. Types NA and SA lime contain air-entraining additives that reduce the extent of bond between the mortar and masonry units or reinforcement, and are therefore not recommended for mortar.

ASTM C1489, Standard Specification for Lime Putty for Structural Purposes [Ref. 1], is prepared from hydrated lime and is often used in restoration projects.

Because lime hardens only upon contact with carbon dioxide in the air, hardening occurs over a long period of time. However, if small hairline cracks develop, water and carbon dioxide that penetrate the joint will react with calcium hydroxide from the mortar and form calcium carbonate. The newly developed calcium carbonate will seal the cracks, limiting further water penetration. This process is known as autogenous healing.

Aggregates
Aggregates (sand) act as a filler material in mortar, providing for an economical mix and controlling shrinkage. Either natural sand or manufactured sand may be used. Gradation limits are given in ASTM C144, Standard Specification for Aggregates for Masonry Mortar [Ref. 1].

Gradation can be easily and inexpensively altered by adding fine or coarse sands. Sometimes the most feasible method requires proportioning the mortar mix to suit the available sand, rather than requiring sand to meet a particular gradation. However, if the sand does not meet the grading requirement of ASTM C144, it can only be used provided the mortar meets the property specifications of ASTM C270.

Water
Water that is clean, potable and free of deleterious acids, alkalis or organic materials is suitable for masonry mortars.

Admixtures
Admixtures are sometimes used in mortar to obtain a specific mortar color, increase workability, decrease setting time, increase setting time, increase flexural bond strength or act as a water repellent [Ref. 2]. Admixtures to achieve a desired color of the mortar are the most widely used. Although some admixtures are harmless, some are detrimental to mortar and the resulting brickwork. Because the properties of both plastic and hardened mortars are highly dependent on mortar ingredients, the use of admixtures should not be considered unless their effect on the mortar is known. Admixtures also should be examined for their effect on the masonry, masonry units and items embedded in the brickwork. For example, admixtures containing chlorides promote corrosion of embedded metal anchors and therefore should not be used. ASTM C1384, Standard Specification for Admixtures for Masonry Mortars [Ref. 1], provides methods to evaluate the effect of admixtures on mortar properties. The admixtures represented in ASTM C1384 are as follows:

Bond Enhancers. Bond enhancers improve flexural bond strength, surface density and freeze-thaw resistance. They are typically used to increase bond strength to smooth, dense surface units and applications such as copings and pavers. Bond enhancers should not be used with air-entraining agents.
Set Accelerators. Set accelerators shorten the time required for cement hydration to occur and typically reduce the setting time by 30 to 40 percent. They are typically used to reduce the time required for cold weather protective measures. Set accelerators typically increase short-term compressive strengths and may affect color.

Set Retarders. Set retarders increase the board life of fresh mortar by increasing the time required for cement hydration to occur. They are typically used in conjunction with hot weather protective measures or to aid in reducing the rapid suction associated with high initial rate of absorption (IRA) brick. Mortar with set retarders should not be retempered, and severely retarded mortar may require moist curing to maintain hydration. Set retarders typically reduce short-term compressive strength and may affect color.

Water Repellents. Water repellent admixtures are typically used in conjunction with concrete masonry units where the admixture is added to both the mortar and to the concrete masonry units. When water-repellent admixtures are used in the mortar alone, they may inhibit bond and are not recommended for use with brick.

Workability Enhancers. Workability enhancers add viscosity to mortar mixes, allowing easier placement of mortar on masonry units. The benefits of workability enhancers are subjective, and their use is more to suit the liking of the mason. They should be reviewed to ensure that there are no deleterious effects on the mortar.

Colored Mortar

Colored mortars may be obtained through the use of colored aggregates or suitable pigments. The use of colored aggregates is preferable when the desired mortar color can be obtained. White sand, ground granite, marble or stone usually have permanent color and do not weaken the mortar. For white joints, use white sand, ground limestone or ground marble with white portland cement and lime.

Most pigments that conform to ASTM C979, *Standard Specification for Pigments for Integrally Colored Concrete* [Ref. 1], are suitable for mortar. Mortar pigments must be sufficiently fine to disperse throughout the mix, capable of imparting the desired color when used in permissible quantities, and must not react with other ingredients to the detriment of the mortar. These requirements are generally met by metallic oxide pigments. Carbon black and ultramarine blue also have been used successfully as mortar colors. Avoid using organic colors and, in particular, those colors containing Prussian blue, cadmium lithopone and zinc and lead chromates. Paint pigments may not be suitable for mortars.

Use as little pigment as is needed to produce the desired results; an excess may seriously impair strength and durability. The maximum permissible quantity of most metallic oxide pigments is 10 percent of the cement content by weight. Although carbon black is a very effective coloring agent, it will greatly reduce mortar strength when used in greater proportions. Therefore, limit carbon black to 2 percent of the cement content by weight.

For best results, use cement and coloring agents premixed in large, controlled quantities. Premixing large quantities will ensure more uniform color than can be obtained by mixing smaller batches in the field. A consistent mixing sequence is essential for color consistency when mixing smaller batches in the field. Further, use the same source of mortar materials throughout the project.

Color uniformity varies with the amount of mixing water, the moisture content of the brick when laid and whether the mortar is retempered. The time and degree of tooling and cleaning techniques also will influence final mortar color. Color permanence depends upon the quality of pigments and the weathering and efflorescing qualities of the mortar.

SPECIFYING MORTAR

Masonry mortars are classified by ASTM C270 into four Types: M, S, N and O. Each mortar Type consists of aggregate, water and one or more of the four cementitious materials (portland or hydraulic cement, mortar cement, masonry cement and lime) listed in the previous section.

There are two methods of specifying mortar by Type in ASTM C270: proportion specifications and property specifications. A cement-lime mortar, a mortar cement mortar, or a masonry cement mortar is permitted. The type of cementitious material desired should be specified.
Proportion Specifications

The proportion specifications require that mortar materials be mixed according to given volumetric proportions. If mortar is specified by this method, no laboratory testing is required, either before or during construction. Table 1 lists proportion requirements of the various mortar Types. Note that masonry cement and mortar cement may be used alone to produce Type M, S, N or O mortars. Additionally, Type N mortar cement or masonry cement may be combined with portland cement to produce a Type M or Type S mortar.

<table>
<thead>
<tr>
<th>Mortar Type</th>
<th>Mortar or Blended Cement</th>
<th>Mortar Cement</th>
<th>Masonry Cement</th>
<th>Hydrated Lime or Lime Putty</th>
<th>Aggregate Ratio (Measured in Damp, Loose Conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>¼</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>over ½ to ½</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>over ½ to 1¼</td>
</tr>
<tr>
<td>O</td>
<td>1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>over 1¼ to 2½</td>
</tr>
</tbody>
</table>

Note: Two air-entraining materials shall not be combined in mortar.

The volumetric proportions given in Table 1 can be converted to weight proportions using assumed weights per cubic foot (cubic meter) for the materials as follows:

- Portland cement: 94 lb (1506 kg)
- Masonry, mortar and blended cements: Varies, use weight printed on bag
- Hydrated lime: 40 lb (641 kg)
- Lime putty: 80 lb (1281 kg)
- Sand, damp and loose: 80 lb (1281 kg) of dry sand

Property Specifications

The property specifications require a mortar mix of the materials to be used for construction to meet the specified properties under laboratory testing conditions. If mortar is specified by the property specifications, compressive strength, water retention and air content tests must be performed prior to construction on mortar mixed in the laboratory with a controlled amount of water. The material quantities determined from the laboratory testing are...
then used in the field with the amount of water determined by the mason. Table 2 lists property requirements of
the various mortar Types. Properties of field-mixed mortar cannot be compared to the requirements of the property
specifications because of the different amounts of water used in the mortars, the use of different mixers and the
different curing conditions. Field sampling of mortar, where specified, is typically performed for tracking project
consistency from beginning to end. It is not to be used for compliance with property specifications. Additional
information about this type of quality assurance testing can be found in Technical Note 8B.

TABLE 2
Property Specification Requirements

<table>
<thead>
<tr>
<th>Mortar</th>
<th>Type</th>
<th>Average Compressive Strength at 28 Days, min. psi (MPa)</th>
<th>Water Retention, min. %</th>
<th>Air Content, max. %</th>
<th>Aggregate Ratio (Measured in Damp, Loose Conditions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement – Lime</td>
<td>M</td>
<td>2500 (17.2)</td>
<td>75</td>
<td>12</td>
<td>Not less than 2¼ and not more than 3½ times the sum of the separate volumes of cementitious materials</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1800 (12.4)</td>
<td>75</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>750 (5.2)</td>
<td>75</td>
<td>14²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>350 (2.4)</td>
<td>75</td>
<td>14²</td>
<td></td>
</tr>
<tr>
<td>Mortar Cement</td>
<td>M</td>
<td>2500 (17.2)</td>
<td>75</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1800 (12.4)</td>
<td>75</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>750 (5.2)</td>
<td>75</td>
<td>14²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>350 (2.4)</td>
<td>75</td>
<td>14²</td>
<td></td>
</tr>
<tr>
<td>Masonry Cement</td>
<td>M</td>
<td>2500 (17.2)</td>
<td>75</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>1800 (12.4)</td>
<td>75</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>750 (5.2)</td>
<td>75</td>
<td>20³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>350 (2.4)</td>
<td>75</td>
<td>20³</td>
<td></td>
</tr>
</tbody>
</table>

1. Laboratory prepared mortar only.
2. When structural reinforcement is incorporated in cement-lime or mortar-cement mortar, the maximum air content shall be 12 percent.
3. When structural reinforcement is incorporated in masonry-cement mortar, the maximum air content shall be 18 percent.

Proportion vs. Property Specifications

The specifier should indicate in the project specifications whether the proportion or the property specifications are
to be used. If the specifier does not indicate which should be used, then the proportion specifications govern by
default. The specifier also should confirm that the mortar Types selected and the materials indicated in the project
specifications are consistent with the structural design requirements of the masonry.

Mortar prepared by the proportion specifications is not to be compared to mortar of the same Type prepared by the
property specifications. A mortar that is mixed according to the proportion specification will have a higher laboratory
compressive strength than that of the corresponding mortar Type under the property specification [Ref. 7].

PHYSICAL PROPERTIES OF MORTAR

Mortars have two distinct, important sets of properties: those in the plastic state and those in the hardened
state. The plastic properties help to determine the mortar’s compatibility with brick and its construction suitability.
Properties of plastic mortar include workability, water retention, initial flow and flow after suction. Properties of
hardened mortars help determine the performance of the finished brickwork. Hardened properties include flexural
bond strength, durability, extensibility and compressive strength. Properties of plastic mortar are more important to
the mason, while the properties of hardened mortar are more important to the designer and owner.

Workability

Workability is the most important physical property of plastic mortar. A mortar is workable if its consistency allows
it to be spread with little effort and if it will readily adhere to vertical masonry surfaces. This results in good extent
of bond between the mortar and the brick, which provides resistance to water penetration. Although experienced
masons are good judges of the workability of a mortar and have developed various methods to determine
suitability, there is no standard laboratory or field test for measuring this property.
Water retention, flow and resistance to segregation affect workability. In turn, these are affected by properties of the mortar ingredients. Because of this complex relationship, quantitative estimates of workability are difficult to obtain. Until a test is developed, the requirements for water retention and aggregate gradation must be relied upon to provide a quantitative measure of workability.

Water Content
Water content is possibly the most misunderstood aspect of masonry mortar, probably due to the similarity between mortar and concrete materials. Many designers mistakenly base mortar specifications on the assumption that mortar requirements are similar to concrete requirements, especially with regard to the water/cement ratio. Many specifications incorrectly require mortar to be mixed with the minimum amount of water consistent with workability. Often, retempering of the mortar is prohibited. These provisions result in mortars that have higher compressive strengths but lower bond strengths. Mixing mortar with the maximum amount of water consistent with workability will provide maximum bond strength within the capacity of the mortar. As a result, water content normally should be determined by the mason or bricklayer to produce the best workability. Retempering is permitted, but only to replace water lost by evaporation. This is usually controlled by the requirement that all mortar be used within 2½ hours after initial mixing, or as determined for hot weather construction.

Water Retention
Water retention is the ability of a mortar to hold water when placed in contact with absorbent masonry units. The laboratory value of water retention is the ratio of flow after suction to the initial flow, expressed in a percentage. Flow after suction, as described in ASTM C91, is determined by subjecting the mortar to a vacuum and remeasuring the flow of the mortar. A mortar that has low water retention will lose moisture more rapidly. This is used in conjunction with the IRA of the brick to select mortar materials and Type.

In general, the following will increase water retention:

1. Addition of sand fines within allowable gradation limits.
2. Use of highly plastic lime (Type S lime).
3. Increased air content.
4. Use of hydraulic cement containing very fine pozzolans.

Initial Flow
Initial flow is essentially a measure of the mortar’s water content. It can be measured by either of two methods: ASTM C109, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars [Ref. 1], or ASTM C780, Standard Test Method for Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry [Ref. 1].

In ASTM C109, a truncated cone of mortar is formed on a flow table, which is then mechanically raised 1 in. (25.4 mm) and dropped 25 times in 15 seconds. During this test, the mortar will flow, increasing the diameter of the mortar specimen. The initial flow is the ratio of the increase in diameter from the initial 4 in. (102 mm) cone base diameter, expressed in a percentage. Flow rates are laboratory tests.

In ASTM C780, a 3½ in. (89 mm) high hollow cylinder is filled with mortar, and a cone-shaped plunger, whose point is placed at the top of the cylinder, is dropped into the mortar. The depth of the cone penetration into the mortar is measured in millimeters. The greater the penetration of the cone into the mortar, the greater its flow or water content. Cone penetration can be measured in the laboratory or in the field.

Laboratory mortars are mixed to have an initial flow of only 105 to 115 percent. Construction mortars normally have initial flows in the range of 130 to 150 percent (sometimes higher in hot weather) to produce workability satisfactory to the mason. Requirements for laboratory-prepared mortar should not be applied to field-prepared mortar. Test results of laboratory-prepared mortar should not be compared to test results of field-prepared mortar without considering the initial flow of each. The lower initial flow requirements for laboratory mortars were set to allow for more consistent test results on most available laboratory equipment, and to compensate for water absorbed by the units.
Extensibility and Plastic Flow

Extensibility is another term for maximum tensile strain at failure. It reflects the maximum elongation possible under tensile forces. High-lime mortars exhibit greater plastic flow than low-lime mortars. Plastic flow, or creep, reacting with extensibility will impart some flexibility to the masonry, permitting slight movement. Where greater resiliency for movement is desirable, the lime content may be increased while still satisfying other requirements.

Flexural Bond Strength

Flexural bond strength is perhaps the most important physical property of hardened mortar. For veneer applications, the bond strength of mortar to brick units provides the ability to transfer lateral loads to veneer anchors. For loadbearing applications, the bond influences the overall strength of the wall for resisting lateral and flexural loads. Variables that affect the bond strength include texture of the brick, suction of the brick, air content of the mortar, water retention of the mortar, pressure applied to the joint during forming, mortar proportions and methods of curing.

Brick Texture. The texture of a brick affects the mechanical bond between the brick and mortar [Ref. 8]. Mortar bond is greater to roughened surfaces, such as wire-cut surfaces, than to smooth surfaces, such as die-skin surfaces. Sanded and coated surfaces can reduce the bond strength depending upon the amount and type of material on the surface and its adherence to the surface.

Brick IRA (Suction). The laboratory-measured initial rate of absorption (IRA) of brick indicates the brick’s suction and whether it should be considered for wetting before use. It is the IRA at the time of laying that influences bond strength. In practically all cases, mortar bonds best to brick with an IRA less than 30 g/min/30 in.² (30 g/min/194 cm²) when laid. If the brick’s IRA exceeds this value, then the brick should be wetted three to 24 hours before laying. Wetted brick should be surface dry when they are laid in mortar.

Several researchers have shown that IRA appears to have little influence on bond strength when the appropriate mortar is used [Refs. 3, 4 and 9].

Air Content. Available information indicates a definite relationship between air content and bond strength of mortar. Provided that other parameters are held constant, as air content is increased, compressive strength and bond strength are reduced, while workability and resistance to freeze-thaw deterioration are increased [Ref. 10].

Water Content. Mortar with a high water content, or flow, at the time of use is beneficial because it can satisfy the suction of the brick and can allow greater control of the mortar for the bricklayer. For all mortars, and with minor exceptions for all brick suction rates, bond strength increases as flow increases. However, excessive water can reduce both workability and bond strength.

The time lapse between spreading mortar and placing brick will affect mortar flow, particularly when mortar is spread on brick with high suction rates, or when construction takes place during hot, dry weather. In such cases, mortar will have less flow by the time brick are placed than when it was first spread. Conceivably, bond to brick placed on this mortar could be materially reduced. For highest bond strength, reduce the time interval between spreading the mortar and laying brick on top of it to a minimum.

Because not all mortar is used immediately after mixing, some of its water may evaporate while it is on the mortar board. The addition of water to mortar (retempering) to replace water lost by evaporation should be encouraged, when necessary. Although compressive strength may be slightly reduced and mortar color lightened if mortar is retempered, bond strength may be lowered if it is not. ASTM C270 requires that all mortar be used within 2½ hours after mixing since the mortar will begin to set. This time may be affected by hot or cold weather, as discussed in Technical Note 1.

Materials and Proportions. There is no precise combination of materials that will always produce optimum bond. Mortars made with cement-lime and mortar cement cementitious materials typically have higher flexural bond strengths than do masonry cement mortars [Refs. 3, 4, 6]. Building codes prescribe the same bond strength values to Type S and M mortars [Ref. 5].

Test Methods. Because many variables affect bond, it may be desirable to achieve reproducible results from a small-scale laboratory test. The bond wrench test, ASTM C1072, Standard Test Method for Measurement of Masonry Flexural Bond Strength [Ref. 1], appears to fulfill this need. It evaluates the flexural bond strength of each
joint in a masonry prism. The apparatus shown in Figure 1 consists of a stack-bonded prism clamped in a stationary frame. A cantilevered arm is clamped to the top brick over the joint to be tested. The free end of the cantilevered arm is loaded until failure, which occurs when the clamped brick is "wrenched" off. The bond wrench test has replaced previous tests of full-sized wall specimens and prisms in which only one joint was tested.

In general, to increase the flexural bond strength:

1. Bond mortar to a wire-cut or roughened surface rather than a die-skin surface.
2. Wet brick with an IRA greater than 30 grams/min/30 in.\(^2\) (30 g/min/194 cm\(^2\)) when laid.
3. Use Type S portland cement-lime mortar, Type S mortar cement or Type S masonry cement mortar with air content in the low to mid-range of ASTM C91 limits.
4. Mix mortar to the maximum flow compatible with workmanship. Use maximum mixing water and permit retempering.

Compressive Strength

As with concrete, the compressive strength of mortar primarily depends upon the cement content and the water/cement ratio. However, because compressive strength of masonry mortar is less important than bond strength, workability and water retention, the latter properties should be given principal consideration in mortar selection. The water/cement ratio of mortar as mixed in the field is reduced due to absorption of water by the adjacent brick.

Proportions. Compressive strength increases with an increase in cement content of mortar and decreases with an increase in water content, lime content or over-sanding. Occasionally air entrainment is introduced to obtain higher flows with lower water content. The reasoning here is that lower water/cement ratios will provide higher compressive strengths. However, this generally proves futile since compressive strength decreases with an increase in air content.

Test Methods. Compressive strength is measured by testing 2 in. (51 mm) mortar cubes or 2 in. (51 mm) or 3 in. (76 mm) diameter cylinders. Procedures for molding and testing cubes appear in ASTM C109, and procedures for molding and testing both cubes and cylinders appear in ASTM C780.

Durability

The durability of mortar in unsaturated masonry is not a serious problem. The durability of mortar is shown in the number of masonry structures that have been in service for many years.

In general, mortar contains sufficient entrapped and entrained air to resist freeze-thaw damage. Though increasing air content may theoretically increase the durability of masonry mortar, a decrease in bond strength, compressive strength and other desirable properties will result. For this reason, the use of air-entraining admixtures to increase air content is not recommended.

Volume Change

Volume changes in mortars can result from four causes: chemical reactions in hardening, temperature changes, wetting and drying, and unsound ingredients that chemically expand. Differential volume change between brick and mortar in a given wythe has no significant effect on performance. However, total volume change can be significant.

Volume change caused by cement hydration (hardening) is often termed shrinkage and depends upon curing conditions, mix proportions and water content. Mortars hardened in contact with brick exhibit considerably less shrinkage than those hardened in nonabsorbent molds. An increase in water content will cause an increase in
shrinkage during hardening of mortar if the excess water is not removed. Change in temperature will lead to expansion or contraction of mortar. Thermal expansion and contraction of masonry and means to accommodate the expected movement are discussed in the Technical Note 18 Series.

Mortar swells as its moisture content increases and shrinks as it decreases. Moisture content changes with normal cycles of wetting and drying. The magnitude of volume change due to this effect is smaller than that from shrinkage. Unsound ingredients or impurities such as unhydrated lime oxides or gypsum can cause significant volume change and are thus limited by ASTM C207.

Efflorescence

Efflorescence is a crystalline deposit of water-soluble salts on the surface of masonry. Mortar may be a major contributor to efflorescence since it is a primary source of calcium hydroxide. This chemical can produce efflorescence on its own and can react with carbon dioxide in the air or solutions from the brick to form insoluble compounds. Mortar can contain other soluble constituents, including alkalis, sulfates and magnesium hydroxide.

Currently there is no standard test method to determine the efflorescence potential of mortar or of a brick/mortar combination. Researchers have concluded that mortars will effloresce under any standard test.

RECOMMENDED MORTAR USES

Selection of a particular mortar Type and materials is usually a function of the needs of the finished masonry element. Type N mortar is recommended for normal use and in most veneer applications. In applications where high lateral strength is required, mortar with high flexural bond strength should be chosen. For loadbearing walls and reinforced brick masonry, high compressive strength may be the governing factor. In some projects, considerations of durability, color and flexibility may be of utmost concern. Factors that improve one property of mortar often do so at the expense of others. For this reason, when selecting a mortar, evaluate properties of each Type and materials and choose the combination that will best meet the particular end-use requirements. No single mortar Type is best for all purposes. Refer to Technical Note 8B for more information on selection of mortar Type.

GREEN BUILDING/SUSTAINABILITY

Sustainability or “Green Building” is a movement to use resources efficiently, create healthier environments and enhance the quality of buildings while minimizing social and environmental impacts on future generations. For further information about the sustainability of brick masonry, refer to Technical Note 48.

While materials used to make mortar are readily abundant and produce a durable material, sustainability can be improved further by using recycled products such as blast furnace slag cement and cements with fly ash in the mortar to partially replace portland cement. Blast furnace slag is a by-product from the production of iron. The waste from the production is processed to produce slag cement. When slag cement is used in mortar, it typically makes the cement hydration process more efficient, increases long-term compressive strength, produces a tighter pore structure and increases workability of mortar during placement. Fly ash comes from coal-fired plants used in generating electrical power. It can replace a portion of the cement in mortar materials. Fly ash increases strength and durability by increasing density.

SUMMARY

Mortar requirements differ from concrete requirements, principally because the primary function of mortar is to bond masonry units into an integral element. Properties of both plastic and hardened mortars are important. Plastic properties determine construction suitability; hardened properties determine performance of finished elements. When selecting a mortar, evaluate all properties, and then select the mortar providing the best results overall for the particular requirements.

The information and suggestions contained in this Technical Note are based on the available data and the combined experience of engineering staff and members of the Brick Industry Association. The information contained herein must be used in conjunction with good technical judgment and a basic understanding of the properties of brick masonry. Final decisions on the use of the information contained in this Technical Note are not within the purview of the Brick Industry Association and must rest with the project architect, engineer and owner.
REFERENCES

 Volume 4.01
 - C91 “Standard Specification for Masonry Cement”
 - C150 “Standard Specification for Portland Cement”
 - C207 “Standard Specification for Hydrated Lime for Masonry Purposes”
 - C595 “Standard Specification for Blended Hydraulic Cements”
 - C1157 “Standard Performance Specification for Hydraulic Cement”
 - C1329 “Standard Specification for Mortar Cement”

 Volume 4.02
 - C979 “Standard Specification for Pigments for Integrally Colored Concrete”

 Volume 4.05
 - C144 “Standard Specification for Aggregate for Masonry Mortar”
 - C270 “Standard Specification for Mortar for Unit Masonry”
 - C780 “Standard Test Method for Preconstruction and Construction Evaluation of Mortars for Plain and Reinforced Unit Masonry”
 - C1072 “Standard Test Method for Measurement of Masonry Flexural Bond Strength”
 - C1384 “Standard Specification for Admixtures for Masonry Mortars”

